Friday, April 2, 2010

Rangkuman Sistem Operasi

BAB IV
PROSES

Awalnya sistem komputer hanya diperbolehkan menjalankan satu program dalam satu waktu. Program ini memiliki kontrol penuh terhadap sistem, dan memiliki akses ke semua sumber daya sistem.Kebutuhan ini menghasilkan gagasan dari sebuah proses, yang merupakan program dalam eksekusi.Proses adalah unit kerja dalam sistem time-sharing modern.
Sistem Operasi diharapkan semakin kompleks oleh penggunanya. Sebuah sistem karena terdiri dari kumpulan proses: Operasi-sistem proses mengeksekusi kode sistem, dan proses mengeksekusi kode pengguna. Semua proses ini berlangsung bersamaan dengan meggunakan CPU multiplexing. Dengan beralih CPU antara proses, sistem operasi dapat membuat komputer lebih produktif.

KONSEP PROSES
Satu permasalahan diskusi kita tentang sistem operasi adalah pertanyaan tentang apa saja aktivitas CPU??
Sistem batch mengeksekusi pekerjaan dan berbagi waktu untuk program-program yang dijalankan oleh pengguna. Bahkan pengguna satu sistem operasi seperti Microsoft Windows dan Macintosh OS, pengguna dapat menjalankan beberapa program pada satu waktu, Misalnya: prosesor, web browser, dan e-mail paket sekaligus.
Jika pengguna hanya dapat menjalankan satu program pada satu waktu, sistem operasi sangat memerlukan dukungan kegiatan internal diprogram sendiri, seperti manajemen memori. Itulah yang dinamakan Proses. Pekerjaan yang serupa dan dalam banyak hal. Sistem operasi dan terminologi teori yang dikembangkan ketika aktivitas utama sistem operasi disebut proses kerja.

1. Proses
Proses adalah program dalam eksekusi. Proses lebih dari sekedar kode program yang kadang-kadang dikenal sebagai bagian teks. Seperti nilai dari program counter dan isi dari register prosesor. Selain itu, proses umumnya termasuk proses stack, yang berisi data temporer (seperti parameter metoda, alamat return dan variabel lokal), dan sebuah bagian data, yang berisi variabel global. Program bukanlah sebuah proses. Program adalah sebuah entitas pasif, seperti isi file yang disimpan pada disk, sedangkan proses adalah suatu entitas aktif, dengan sebuah program counter menentukan instruksi berikutnya untuk mengeksekusi dan seperangkat sumber daya yang terkait. Meskipun dua proses dapat dikaitkan dengan program yang sama, mereka tetap dianggap dua urutan eksekusi yang terpisah.
2. Process State
a. Running. Status yang dimiliki pada saat instruksi-instruksi dari sebuah proses dieksekusi
b. Waiting. Status yang dimiliki pada saat proses menunggu suatu sebuah event seperti proses M/K.
c. Ready. Status yang dimiliki pada saat proses siap untuk dieksekusi oleh prosesor.
d. New. Status yang dimiliki pada saat proses baru saja dibuat
e. Terminated. Status yang dimiliki pada saat proses telah selesai dieksekusi.
Hanya satu proses yang dapat berjalan pada prosesor mana pun pada satu waktu. Namun, banyak proses yang dapat berstatus Ready atau Waiting.
Gambar 1 : Diagram Status proses
3. Blok Kontrol Proses
Setiap proses digambarkan dalam sistem operasi oleh sebuah process control block(PCB) yang juga disebut sebuah control block.
Gambar 2 : Process Control Block
PCB berisikan banyak bagian dari informasi yang berhubungan dengan sebuah proses yang spesifik, termasuk hal-hal di bawah ini:
a. Status Proses. Status new, ready, running, waiting, halted, dan juga banyak lagi.
b. Program Counter . Suatu stack yang berisi alamat dari instruksi selanjutnya untuk dieksekusi untuk proses ini.
c. CPU register. Register bervariasi dalam jumlah dan jenis, tergantung pada rancangan komputer. Register tersebut termasuk accumulator, register indeks, stack pointer, general-purposes register, ditambah code information pada kondisi apa pun. Beserta dengan program counter, keadaan/status informasi harus disimpan ketika gangguan terjadi, untuk memungkinkan proses tersebut berjalan/bekerja dengan benar setelahnya.
Gambar 3 : Diagram yang menunjukkan CPU beralih dari proses untuk di proses
d. Informasi manajemen memori. Informasi ini dapat termasuk suatu informasi sebagai nilai dari dasar dan batas register, tabel halaman, atau tabel segmen tergantung pada sistem memori yang digunakan oleh sistem operasi (lihat Bagian V, Memori).
e. Informasi pencatatan. Informasi ini termasuk jumlah dari CPU dan waktu riil yang digunakan, batas waktu, jumlah akun, jumlah job atau proses, dan banyak lagi.
f. Informasi status I / O. Informasi termasuk daftar dari perangkat I/O yang di gunakan pada proses ini, daftar berkas-berkas yang sedang diakses dan banyak lagi.
4. Threads
Proses merupakan sebuah program yang mengeksekusi thread tunggal. Kendali thread tunggal ini hanya memungkinkan proses untuk menjalankan satu tugas pada satu waktu. Banyak sistem operasi modern telah memiliki konsep yang dikembangkan agar memungkinkan sebuah proses untuk mengeksekusi multi-threads. Misalnya user melakukan pekerjaan secara bersamaan yaitu mengetik dan menjalankan pemeriksaan ejaan didalam proses yang sama.

PENJADWALAN PROSES
Tujuan dari multiprogramming adalah untuk menjalankan beberapa proses secara bersamaan, sehingga memaksimalkan penggunaan CPU. Waktu-berbagi untuk beralih antar proses CPU yang begitu cepat, menjadikan pengguna dapat berinteraksi baik dengan setiap program yang dijalankan. Sebuah sistem uniprocessor hanya dapat menjalankan satu proses. Jika ada proses yang lain, maka harus menunggu sampai CPU bebas dan dapat dijadwalkan kembali.
1. Scheduling Queues (Penjadwalan Antrian)
Ketika sebuah proses memasuki sistem, proses itu diletakkan di dalam job queue . Pada antrian ini terdapat seluruh proses yang berada dalam sistem. Sedangkan proses yang berada pada memori utama, siap dan menunggu untuk mengeksekusi disimpan dalam sebuah daftar yang bernama ready queue . Antrian ini biasanya disimpan sebagai linked list . Header dari ready queue berisi pointer untuk PCB pertama dan PCB terakhir pada list. Setiap PCB memiliki pointer field yang menunjuk kepada PCB untuk proses selanjutnya dalam ready queue .
Sistem operasi juga memiliki antrian lain. Ketika sebuah proses dialokasikan ke CPU, proses tersebut berjalan sebentar lalu berhenti, di-interupsi, atau menunggu suatu hal tertentu seperti selesainya suatu permintaan I/O. Dalam permintaan I/O, bisa saja yang diminta itu adalah tape drive, atau peralatan yang di- share secara bersama-sama, seperti disk. Karena ada banyak proses dalam sistem, disk bisa saja sibuk dengan permintaan I/O dari proses lainnya. Untuk itu proses tersebut mungkin harus menunggu disk tersebut. Daftar dari proses-proses yang menunggu peralatan I/O tertentu disebut dengan device queue. Tiap peralatan memiliki device queue-nya masing-masing.
Gambar 4 : Device Queue
2. Schedulers
Sebuah proses berpindah antara berbagai penjadualan antrian selama umur hidupnya. Sistem operasi harus memilih, untuk keperluan penjadualan, memproses antrian-antrian ini dalam cara tertentu. Pemilihan proses dilaksanakan oleh penjadual yang tepat/ cocok. Dalam sistem batch, sering ada lebih banyak proses yang diserahkan daripada yang dapat dilaksanakan segera. Proses ini dipitakan/ disimpan pada suatu alat penyimpan masal (biasanya disk), dimana proses tersebut disimpan untuk eksekusi dilain waktu. Penjadualan long term, atau penjadual job, memilih proses dari pool ini dan mengisinya kedalam memori eksekusi.
Gambar 5 : Addition o f medium-term scheduling to the queueing diagram
3. Context Switch
Mengganti CPU ke proses lain memerlukan penyimpanan suatu keadaan proses lama (state of old process) dan kemudian beralih ke proses yang baru. Tugas tersebut diketahui sebagai alih konteks (context switch). Alih konteks sebuah proses digambarkan dalam PCB suatu proses; termasuk nilai dari CPU register, status proses dan informasi managemen memori. Waktu context switch sangat begantung pada dukungan perangkat keras. Sebagai contoh, prosesor seperti UltraSPARC menyediakan beberapa set register. Sebuah proses context switch hanya memasukkan perubahan pointer ke set register yang ada saat itu. Tentu saja, jika proses aktif yang ada lebih banyak daripada proses yang ada pada set register, sistem menggunakan bantuan untuk meng-copy data register dari dan ke memori, sebagaimana sebelumnya. Semakin kompleks suatu sistem operasi, semakin banyak pekerjaan yang harus dilakukan selama context switch. Bisa dilihat pada Bab Memori, teknik managemen memori tingkat lanjut dapat mensyaratkan data tambahan untuk diganti dengan tiap data. Sebagai contoh, ruang alamat dari proses yang ada saat itu harus dijaga sebagai ruang alamat untuk proses yang akan dikerjakan berikutnya. Bagaimana ruang alamat dijaga, berapa banyak pekerjaan dibutuhkan untuk menjaganya, tergantung pada metode managemen memori dari sistem operasi. Akan kita lihat pada Bab Memori, context switch terkadang bisa menyebabkan bottleneck , dan programmer menggunakan struktur baru (threads) untuk menghindarinya kapan pun memungkinkan.

OPERASI PADA PROSES
1. Proses Creation
Secara umum, suatu proses akan memerlukan sumber tertentu (waktu CPU, memori, berkas, perangkat I/O) untuk menyelesaikan tugasnya. Ketika suatu proses membuat sebuah subproses, sehingga subproses dapat mampu untuk memperoleh sumbernya secara langsung dari sistem operasi. Induk mungkin harus membatasi sumber diantara anaknya, atau induk dapat berbagi sebagian sumber (seperti memori berkas) diantara beberapa dari anaknya. Membatasi suatu anak proses menjadi subset sumber daya induknya mencegah proses apa pun dari pengisian sistem yang telalu banyak dengan menciptakan terlalu banyak subproses.
Gambar 6 : Pohon Proses system khas unix
2. Process Termination
Sebuah proses berakhir ketika proses tersebut selesai mengeksekusi pernyataan akhirnya dan meminta sistem operasi untuk menghapusnya dengan menggunakan sistem pemanggilan exit. Pada titik itu, proses tersebut dapat mengembalikan data (keluaran) pada induk prosesnya (melalui sistem pemanggilan wait)
Ada situasi tambahan tertentu ketika terminasi terjadi. Sebuah proses dapat menyebabkan terminasi dari proses lain melalui sistem pemanggilan yang tepat (contoh abort). Biasanya, sistem seperti itu dapat dipanggil hanya oleh induk proses tersebut yang akan diterminasi.

KOMUNIKASI ANTAR PROSES
1. Proses Kooperatif
Proses yang bersifat simultan (concurrent) dijalankan pada sistem operasi dapat dibedakan menjadi 2 yaitu proses independent dan proses kooperatif.
Suatu proses dikatakan independen apabila proses tersebut tidak dapat terpengaruh atau dipengaruhi oleh proses lain yang sedang dijalankan pada sistem. Berarti, semua proses yang tidak membagi data apa pun (baik sementara/ tetap) dengan proses lain adalah independent.
Sedangkan proses kooperatif adalah proses yang dapat dipengaruhi atau pun terpengaruhi oleh proses lain yang sedang dijalankan dalam sistem. Dengan kata lain, proses dikatakan kooperatif bila proses dapat membagi datanya dengan proses lain.
2. Komunikasi Proses Dalam Sistem
Cara lain untuk meningkatkan efek yang sama adalah untuk sistem operasi yaitu untuk menyediakan alat-alat proses kooperatif untuk berkomunikasi dengan yang lain lewat sebuah komunikasi dalam proses (IPC = Inter-Process Communication).
IPC menyediakan sebuah mekanisme untuk mengizinkan proses-proses untuk berkomunikasi dan menyelaraskan aksi-aksi mereka tanpa berbagi ruang alamat yang sama.
IPC adalah khusus digunakan dalam sebuah lingkungan yang terdistribusi dimana proses komunikasi tersebut mungkin saja tetap ada dalam komputer-komputer yang berbeda yang tersambung dalam sebuah jaringan.
IPC adalah penyedia layanan terbaik dengan menggnakan sebuah sistem penyampaian pesan, dan sistem-sistem pesan dapat diberikan dalam banyak cara.
3. Sinkronisasi
Komunikasi antara proses membutuhkan place by calls untuk mengirim dan menerima data primitive. Terdapat rancangan yang berbeda-beda dalam implementasi setiap primitive. Pengiriman pesan mungkin dapat diblok (blocking) atau tidak dapat dibloking (nonblocking) - juga dikenal dengan nama sinkron atau asinkron.
Pengiriman yang diblok: Proses pengiriman di blok sampai pesan diterima oleh proses penerima (receiving process) atau oleh mailbox.
Pengiriman yang tidak diblok: Proses pengiriman pesan dan mengkalkulasi operasi.
Penerimaan yang diblok: Penerima mem blok samapai pesan tersedia.
Penerimaan yang tidak diblok: Penerima mengembalikan pesan valid atau null.
4. Buffering
Baik komunikasi itu langsung atau tak langsung, penukaran pesan oleh proses memerlukan antrian sementara. Pada dasarnya, terdapat tiga jalan dimana antrian tersebut diimplementasikan:
Kapasitas nol: antrian mempunyai panjang maksimum 0, maka link tidak dapat mempunyai penungguan pesan (message waiting). Dalam kasus ini, pengirim harus memblok sampai penerima menerima pesan.
Kapasitas terbatas: antrian mempunyai panjang yang telah ditentukan, paling banyak n pesan dapat dimasukkan. Jika antrian tidak penuh ketika pesan dikirimkan, pesan yang baru akan menimpa, dan pengirim pengirim dapat melanjutkan eksekusi tanpa menunggu. Link mempunyai kapasitas terbatas. Jika link penuh, pengirim harus memblok sampai terdapat ruang pada antrian.
Kapasitas tak terbatas: antrian mempunyai panjang yang tak terhingga, maka, semua pesan dapat menunggu disini. Pengirim tidak akan pernah di blok.


Rangkuman Sistem Operasi

BAB III : Struktur Sistem Operasi

Sistem operasi modern adalah suatu sistem yang besar dan kompleks. Dan tentu saja proses mendesain sistem operasi bukanlah pekerjaan mudah. Karena itu, didalam desain sistem operasi digunakan suatu struktur agar sistem tersebut bisa dipelajari dengan mudah, digunakan, dan dikembangkan lebih lanjut.
Banyak sistem yang dimulai dengan sistem yang lebih kecil, sederhana, dan terbatas. Contoh sistem seperti ini adalah MS-DOS, yang disusun untuk mendukung fungsi yang banyak pada ruang yang sedikit karena keterbatasan perangkat keras untuk menjalankannya.

KOMPONEN SISTEM OPERASI
Sistem operasi terdiri dari beberapa komponen, antara lain :
a. Manajemen proses.
b. Manajemen memori utama.
c. Manajemen file.
d. Manajemen sistem I/O
e. Manajemen penyimpanan sekunder.
f. System jaringan.
g. System proteksi.
h. System command interpreter.

1. Manajemen Proses
Proses adalah program yang sedang dieksekusi. Sebuah proses memerlukan sumber daya (resource) tertentu seperti waktu CPU, memori, file dan perangkat I/O untuk menyelesaikan tugasnya. Untuk mengatur proses yang ada, sistem operasi bertanggung jawab pada aktrifitas-aktifitas yang berhubungan denagn manajemen proses berikut :
• Pembuatan dan penghapusan proses pengguna dan sistem proses.
• Menunda atau melanjutkan proses.
• Menyediakan mekanisme untuk proses sinkronisasi.
• Menyediakan mekanisme untuk proses komunikasi.
• Menyediakan mekanisme untuk penanganan deadlock.

2. Manajemen Memori Utama
Memori utama atau biasanya disebut dengan memori adalah sebuah array besar berukuran word atau byte, dimana setiap array tersebut mempunyai alamat tertentu. Memori adalah penyimpan yang dapat mengakses data dengan cepat yang digunakan oleh CPU dan perangkat I/O. Memori adalah perangkat penyimpan volatile. Isi memori akan hilang apabila terjadi kegagalan system. Untuk mengatur memori, sistem operasi bertanggung jawab pada aktifitas-aktifitas manajemen memori sebagai berikut :
a. Menjaga dan memelihara bagian-bagian memori yang sedang digunakan dan dari yang menggunakan.
b. Memutuskan proses-proses mana saja yang harus dipanggil ke memori jika tersedia ruang di memori.
c. Mengalokasikan dan men-dealokasikan ruang memori jika diperlukan.
3. Manajemen File
File adalah kumpulan informasi yang saling berhubungan yang sudah didefinisikan oleh pembuatnya (user). Biasanya, file berupa program (baik dalam bentu source maupun object) dan data. File dapat mempunyai struktur yang bersifat hirarkis (direktori, volume dll). Untuk mengatur file, sistem operasi bertanggung jawab pada aktifitas-aktifitas yang berhubungan dengan manajemen file sebagai berikut:
a. Pembuatan dan penghapusan file.
b. Pembuatan dan penghapusan direktori.
c. Mendukung untuk manipulasi file dan direktori.
d. Pemetaan file ke memori sekunder.
e. Backup file ke media penyimpanan yang stabil (nonvolatile).
4. Manajemen Sistem I/O
Sering disebut "device manager". Menyediakan "device driver" yang umum sehingga operasi I/O dapat seragam (membuka, membaca, menulis, menutup). Contoh: pengguna menggunakan operasi yang sama untuk membaca file pada hard-disk, CD-ROM dan floppy disk.
Sistem operasi bertanggung-jawab pada aktifitas-aktifitas sistem I/O sebagai berikut:
• Buffer : menampung sementara data dari/ke perangkat I/O.
• Spooling : melakukan penjadwalan pemakaian I/O sistem supaya lebih efisien (antrian dsb.).
• Menyediakan "driver" untuk dapat melakukan operasi "rinci" untuk perangkat keras I/O tertentu.

5. Manajemen Penyimpanan Sekunder
Data yang disimpan dalam main-memory bersifat sementara dan jumlahnya sangat kecil dan bersifat volatile. Beberapa sistem

komputer modern menggunakan disk untuk media penyimpan on-lin, baik program maupun data. Oleh karena itu, untuk meyimpan keseluruhan data dan program komputer dibutuhkan secondary-storage yang bersifat permanen dan mampu menampung banyak data. Contoh dari secondary-storage adalah harddisk, disket, dll.
Sistem operasi bertanggung jawab atas aktivitas-aktivitas yang berkaitan dengan disk-management seperti:
a. Free-space management.
b. Alokasi penyimpanan
c. Penjadwalan disk

6. Sistem Jaringan
Biasa juga disebut Sistem Terdistribusi. Sistem ini merupakan kumpulan prosessor yang tidak menggunakan memori atau clock bersama-sama. Setiap prosessor mempunyai local memori sendiri. Prosessor-prosessor pada sistem dihubungkan melalui jaringan komunikasi. Komunikasi dilakukan dengan menggunakan protocol. Sistem terdistribusi menyediakan akses pengguna ke bermacam resource sistem .Dengan mengakses sumber daya yang dapat digunakan bersama-sama tersebut akan memberikan keuntungan dalam :
• Meningkatkan kecepatan komputasi (Computation speed-up).
• Meningkatkan ketersediaan data (Increased data availability).
• Meningkatkan kehandalan sistem (Enhanced reliability).

7. Sistem Proteksi
Proteksi mengacu pada mekanisme untuk mengontrol akses yang dilakukan oleh program, prosesor, atau pengguna ke sistem sumber daya. Mekanisme sistem proteksi yang harus disediakan sistem meliputi :
• Membedakan antara penggunaan yang sah dan yang tidak sah.
• Menentukan kontrol yang terganggu.
• Menetapkan cara pelaksanaan proteksi.

8. System command interpreter
Beberapa perintah yang dimasukkan ke sistem operasi menggunakan pernyataan kontrol yang digunakan untuk
• Manajemen dan pembuatan proses
• Penangananan I/O
• Manajemen penyimpan sekunder
• Manajemen memori utama
• Akses sistem file
• Proteksi
• Jaringan Program yang membaca dan menterjemakan pernyataan kontrol disebut dengan command-line intepreter atau shell pada UNIX. Fungsinya adalah untuk mengambil dan mengeksekusi pernyataan perintah berikutnya. Command-Interpreter System sangat bervariasi dari satu sistem operasi ke sistem operasi yang lain dan disesuaikan dengan tujuan dan teknologi I/O devices yang ada. Contohnya : CLI, Windows, Pen-based (touch) dll.

LAYANAN SISTEM OPERASI
Sistem operasi menyediakan layanan untuk programmer sehingga dapat melakukan pemrograman dengan mudah.
a. Eksekusi program adalah kemampuan sistem untuk "load" program ke memori dan menjalankan program. Sistem harus dapat memanggil program ke memori dan menjalankannya. Program tersebut harus dapat mengakhiri eksekusinya dalam bentuk normal atau abnormal (indikasi error).
b. Operasi-operasi I/O. Pada saat running program kemungkinan dibutuhkan I/O, mungkin berupa file atau peralatan I/O.
Pengguna tidak dapat secara langsung mengakses sumber daya perangkat keras, sistem operasi harus menyediakan mekanisme untuk melakukan operasi I/O atas nama pengguna . Ini dilakukan agar efisien dan aman.
c. Manipulasi sistem file. Merupakan kemampuan program untuk operasi pada file (membaca, menulis, membuat, and menghapus file).
d. Komunikasi. Merupakan pertukaran data/informasi antar dua atau lebih proses yang berada pada satu komputer (atau lebih). Penukaran informasi dapat dilakukan oleh beberapa proses dalam satu komputer atau dalam komputer yang berbeda melalui sistem jaringan. Komunikasi dilakukan dengan cara berbagi memori (shared memory) atau dengan cara pengiriman pesan (message passing).
e. Mendeteksi kesalahan / DeteksiError. Sistem harus menjamin kebenaran dalam komputasi dengan melakukan pendeteksian error pada CPU dan memori, perangkat I/O atau pada user program.
Beberapa fungsi tambahan yang ada tidak digunakan untuk membantu user, tetapi lebih digunakan untuk menjamin operasi sistem yang efisien, yaitu :
• Resoursce allocator adalah mengalokasikan sumberdaya ke beberapa pengguna atau job yang jalan pada saat yang bersamaan.
• Proteksi menjamin akses ke sistem sumber daya dikendalikan (pengguna dikontrol aksesnya ke sistem).
• Accounting adalah merekam kegiatan pengguna, jatah pemakaian sumber daya (keadilan atau kebijaksanaan).

SISTEM CALL
System call menyediakan interface antara program (program pengguna yang berjalan) dan bagian OS. System call menjadi jembatan antara proses dan sistem operasi. System call ditulis dalam bahasa assembly atau bahasa tingkat tinggi yang dapat mengendalikan mesin (C). Contoh: UNIX menyediakan System call: read, write => operasi I/O untuk file. Sering pengguna program harus memberikan data (parameter) ke OS yang akan dipanggil. Contoh pada UNIX: read(buffer, max_size, file_id);
Terdapat 3 (tiga) metode yang umum digunakan untuk melewatkan parameter antara program yang sedang berjalan dengan sistem operasi yaitu :
• Melewatkan parameter melalui register.
• Menyimpan parameter pada tabel yang disimpan di memori dan alamat tabel tersebut dilewatkan sebagai parameter di register seperti Gambar dibawah.
• Push (menyimpan) parameter ke stack oleh program dan pop (mengambil) isi stack y mg dilakukan oleh system operasi.
Gambar 1 : Melewatkan Parameter melalui tabel

Pada dasarnya System call dapat dikelompokkan dalam 5 kategori. Yaitu:

a. Kontrol Proses
Hal-hal yang dilakukan:
• Mengakhiri (end) dan membatalkan (abort);
• Mengambil (load) dan eksekusi (execute);
• Membuat dan mengakhiri proses;
• Menentukan dan mengeset atribut proses;
• Wait for time;
• Wait event, signal event;
• Mengalokasikan dan membebaskan memori. Contoh: Sistem operasi pada MS-DOS menggunakan sistem singletasking yang memiliki command interpreter yang akan bekerja pada saat start (Gambar 2). Karena singletasking, maka akan menggunakan metode yang sederhana untuk menjalankan program dan tidak akan membuat proses baru. Sistem operasi UNIX dapat menjalankan banyak program (Gambar 3).
Gambar 2 : Sistem MSDOS: (a) pada saat startup (b) pada saat running
Gambar 3 : UNIX menjalankan lebih dari satu proses
b. Manipulasi File
Hal-hal yang dilakukan:
• Membuat dan menghapus file.
• Membuka dan menutup file.
• Membaca, menulis, dan mereposisi file.
• Menentukan dan mengeset atribut file.
c. Manipulasi Device
Hal-hal yang dilakukan:
• Meminta dan mmebebaskan device.
• Membaca, menulis, dan mereposisi file.
• Menentukan dan mengeset atribut device.
d. Informasi Lingkungan
Hal-hal yang dilakukan:
• Mengambil atau mengeset waktu atau tanggal.
• Mengambil atau mengeset sistem data.
• Mengambil atau mengeset proses, file atau atribut-atribut device.
e. Komunikasi
Hal-hal yang dilakukan:
• Membuat dan menghapus sambungan komunikasi;
• Mengirim dan menerima pesan;
• Mentransfer satus informasi;
Ada 2 model komunikasi:
a. Message-passing model. Informasi saling ditukarkan melalui fasilitas yang telah
ditentukan oleh sistem operasi (Gambar 4a).
b. Shared-memory Model. Proses-proses menggunakan map memory untuk mengakses daerah-daerah di memori dengan proses-proses yang lain (Gambar 4b).

SISTEM PROGRAM
System program menyediakan lingkungan yang nyaman untuk pengembangan dan eksekusi program. Kebanyakan user melihat system operasi yang didefinisikan oleh system program dan bukan system call sebenarnya. System program adalah masalah yang relatif kompleks, namun dapat dibagi menajdi beberapa kategori, antara lain:
a. Manipulasi File. Meliputi: membuat, menghapus, mengcopy, rename, print, dump, list pada file dan direktori.
b. Status Informasi. Meliputi: tanggal, waktu (jam, menit, detik), penggunaan memori atau disk space, banyaknya user.
c. Modifikasi File. Ada beberapa editor yang sanggup digunakan sebagai sarana untuk menulis atau memodifikasi file yang tersimpan dalam disk atau tape.
d. Bahasa Pemrograman yang mendukung. Meliputi: Compiler, assambler, dan interpreter untuk beberapa bahasa pemrograman (seperti: Fortran, Cobol, Pascal,
Basic, C, dan LISP).
e. Pemanggilan dan Eksekusi Program. Pada saat program dicompile, maka harus dipanggil ke memori untuk dieksekusi. Suatu sistem biasanya memiliki absolute loader, melokasikan loader, linkage editor, dan overlay loader. Juga dibutuhkan debugging sistem untuk bahasa tingkat tinggi.
f. Komunikasi. Sebagai mekanisme untuk membuat hubungan virtual antar proses, user, dan sistem komputer yang berbeda.
g. Program-program aplikasi. Sistem operasi harus menyokong program-program yang berguna untuk menyelesaikan permasalahan secara umum, atau membentuk operasi-operasi secara umum, seperti kompiler, pemformat teks, paket plot, sistem basis data, spreadsheet, paket analisis statistik, dan games.

STRUKTUR SISTEM OPERASI
Sistem komputer modern yang semakin komplek dan rumit memerlukan sistem operasi yang dirancang dengan sangat hati-hati agar dapat berfungsi secara optimum dan mudah untuk dimodifikasi.

a. Struktur Sistem MS-DOS
Ada sejumlah sistem komersial yang tidak memiliki struktur yang cukup baik. Sistem operasi tersebut sangat kecil, sederhana dan memiliki banyak keterbatasan. Salah satu contoh sistem tersebut adalah MS-DOS. MS-DOS dirancang oleh orang-orang yang tidak memikirkan akan kepopuleran software tersebut. Sistem operasi tersebut terbatas pada perangkat keras sehingga tidak terbagi menjadi modul-modul. Meskipun MS-DOS mempunyai beberapa struktur, antar muka dan tingkatan fungsionalitas tidak terpisah secara baik seperti pada Gambar 5. Karena Intel 8088 tidak menggunakan dual-mode sehingga tidak ada proteksi hardware. Oleh karena itu orang mulai enggan menggunakannya.
Gambar 5 : Struktur layer pada MS-DOS

b. Struktur Sistem UNIX
Sistem operasi UNIX (Original UNIX) juga terbatas pada fungsi perangkat keras dan struktur yang terbatas. UNIX hanya terdiri atas 2 bagian, yaitu Kernel dan program sistem. Kernel berada di bawah tingkat antarmuka system call dan diatas perangkat lunak secara fisik. Kernel ini berisi sistem file, penjadwalan CPU, menejemen memori, dan fungsi sistem operasi lainnya yang ada pada sistem call berupa sejumlah fungsi yang besar pada satu level. Program sistem meminta bantuan kernel untuk memanggil fungsi-fungsi dalam kompilasi dan manipulasi file. Struktur system UNIX dapat dilihat pada Gambar 6.
Gambar 6 : Struktur Sistem UNIX

c. Pendekatan Terlapis (Layered Approach)
Teknik pendekatan terlapis pada dasarnya dibuat dengan menggunakan pendekatan top-down, semua fungsi ditentukan dan dibagi menjadi komponen-komponen. Modularisasi sistem dilakukan dengan cara memecah sistem operasi menajdi beberapa lapis (tingkat). Lapisan terendah (layer 0) adalah perangkat keras dan lapisan teratas (layer N) adalah user interface. Dengan system modularisasi, setiap lapisan mempunyai fungsi (operasi) tertentu dan melayani lapisan yang lebih rendah. Gambar 7 menunjukkan system pendekatan terlapis tersebut. Contoh sistem operasi yang menggunakan sistem ini adalah: UNIX termodifikasi, THE, Venus dan OS/2 (Gambar 8).
Gambar 7 : Struktur Sistem Terlapis
Gambar 8 : Struktur Sistem OS/2

MESIN VIRTUAL
Konsep dasar dari mesin virtual ini tidak jauh berbeda dengan pendekatan terlapis, hanya saja konsep ini memberikan sedikit tambahan berupa antarmuka yang menghubungkan perangkat keras dengan kernel untuk tiap-tiap proses, Gambar 9 menunjukkan konsep tersebut. Mesin virtual menyediakan antar muka yang identik untuk perangkat keras yang ada. Sistem operasi membuat ilusi untuk beberapa proses, masing-masing mengeksekusi prosessor masing-masing untuk memori (virtual) masing-masing.
Gambar 9 : Struktur Mesin Virtual
Meskipun konsep ini cukup baik, namun sulit untuk diimplementasikan, ingat bahwa sistem menggunakan metode dual-mode. Mesin virtual hanya dapat berjalan pada monitor-mode jika berupa sistem operasi, sedangkan mesin virtual itu sendiri berjalan dalam bentuk user-mode. Konsekuensinya, baik virtual monitor-mode maupun virtual user-mode harus dijalankan melalui physical user mode. Hal ini menyebabkan adanya transfer dari user-mode ke monitor-mode pada mesin nyata, yang juga akan menyebabkan adanya transfer dari virtual user-mode ke virtual monitor-mode pada mesin virtual. Sumber daya (resource) dari computer fisik dibagi untuk membuat mesin virtual. Penjadwalan CPU dapat membuat penampilan bahwa user mempunyai prosessor sendiri. Spooling dan system file dapat menyediakan card reader virtual dan line printer virtual. Terminal time sharing pada user melayani sebagai console operator mesin virtual. Contoh sistem operasi yang memakai mesin virtual adalah IBM VM system.
Keuntungan dan kerugian konsep mesin virtual adalah sebagai berikut :
• Konsep mesin virtual menyediakan proteksi yang lengkap untuk sumber daya system sehingga masing-masing mesin virtual dipisahkan mesin virtual yang lain. Isolasi ini tidak memperbolehkan pembagian sumber daya secara langsung
• Sistem mesin virtual adalah mesin yang sempurna untuk riset dan pengembangan system operasi. Pengembangan system dikerjakan pada mesin virtual, termasuk di dalamnya mesin fisik dan tidak mengganggu operasi system yang normal.
• Konsep mesin virtual sangat sulit untuk mengimplementasikan kebutuhan dan duplikasi yang tepat pada mesin yang sebenarnya.
Gambar 10 : Java Virtual Machine
Virtual Machine(VM) => control program yang minimal VM memberikan ilusi multitasking: seolah-olah terdapat prosesor dan memori ekslusif digunakan VM. VM memilah fungsi multitasking dan implementasi extended machine (tergantung proses pengguna) => flexible dan lebih mudah untuk pengaturan. Jika setiap pengguna diberikan satu VM => pengguna bebas untuk menjalankan OS (kernel) yang diinginkan pada VM tersebut. Potensi lebih dari satu OS dalam satu komputer. Contoh : IBM VM370: menyediakan VM untuk berbagai OS: CMS (interaktif), MVS, CICS, dll. Masalah : Sharing disk => setiap OS mempunyai file sistem yang mungkin berbeda. IBM: virtual disk (minidisk) yang dialokasikan untuk pengguna melalui VM.
Java merupakan system yang menggunakan implementasi mesin virtual. Untuk mengkompilasi program Java maka digunakan kode bit yang disebut platform-neutral bytecode yang dieksekusi oleh Java Virtual Machine (JVM). JVM terdiri dari class loader, class verifier dan runtime interpreter seperti pada Gambar 10.

PERANCANGAN SISTEM DAN IMPLEMENTASI
Target untuk pengguna : sistem operasi harus nyaman digunakan, mudah dipelajari, dapat diandalkan , aman dan cepat.
Target untuk sistem : sistem operasi harus gampang didesain, diimplementasi, dan dimantain, sebagaimana fleksibel, error dan effisien.
Mekanisme dan Kebijaksanaan :
• Mekanisme menjelaskan bagaimana melakukan sesuatu kebijaksanaan memutuskan apa yang akan dilakukan. Pemisahan kebijaksanaan dari mekanisme merupakan hal yang sangat penting; ini mengijinkan fleksibilitas yang tinggi bila kebijaksanaan akan diubah nanti.
• Kebijaksanaan memutuskan apa yang akan dilakukan.
Pemisahan kebijaksanaan dari mekanisme merupakan hal yang sangat penting; ini mengijinkan fleksibilitas yang tinggi bila kebijaksanaan akan diubah nanti.
Implementasi Sistem biasanya menggunakan bahas assembly, sistem operasi sekarang dapat ditulis dengan menggunakan bahasa tingkat tinggi. Kode yang ditulis dalam bahasa tingkat tinggi dapat dibuat dengan cepat, lebih ringkas, lebih mudah dimengerti dan didebug. Sistem operasi lebih mudah dipindah ke perangkat keras yang lain bila ditulis dengan bahasa tingkat tinggi.

SYSTEM GENERATION (SYSGEN)
Sistem operasi dirancang untuk dapat dijalankan di berbagai jenis mesin; sistemnya harus di konfigurasi untuk tiap komputer.
Program SYSGEN mendapatkan informasi mengenai konfigurasi khusus dari sistem perangkat keras.
Booting : memulai komputer dengan me-load kernel.
Bootstrap program : kode yang disimpan di code ROM yang dapat menempatkan kernel, memasukkannya kedalam memori, dan memulai eksekusinya.